Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds – Communications Biology


  • Angilletta, M. J. Thermal adaptation: a theoretical and empirical synthesis. https://doi.org/10.1093/acprof:oso/9780198570875.001.1. (2009).

  • Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect Phys. 33, 50–152 (2006).


    Google Scholar
     

  • Lee, J.-Y. et al. Future global climate: scenario-based projections and near-term information. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 553–672 (Cambridge University Press, 2021). https://doi.org/10.1017/9781009157896.006.

  • Halsch, C. A. et al. Insects and recent climate change. Proc. Natl Acad. Sci. USA. 118, 1–9 (2021).


    Google Scholar
     

  • Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28, 175–216 (2003).


    Google Scholar
     

  • Pigliucci, M., Murrenm, C. & Schlichting, C. D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209, 2362–2367 (2006).

    PubMed 

    Google Scholar
     

  • West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA. 102, 6543–6549 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B Biol. Sci. 282, 20150401 (2015).

  • Huey, R. B., Berrigan, D., Gilchr, G. W. & Herron, J. C. Testing the adaptive significance of acclimation: a strong inference approach. Am. Zool. 39, 323–336 (1999).


    Google Scholar
     

  • Lagerspetz, K. Y. H. What is thermal acclimation? J. Therm. Biol. 31, 332–336 (2006).


    Google Scholar
     

  • Mutamiswa, R., Machekano, H., Chidawanyika, F. & Nyamukondiwa, C. Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Sweinhoe) (Lepidoptera: Crambidae). J. Therm. Biol. 75, 85–94 (2019).


    Google Scholar
     

  • Gray, E. M. Thermal acclimation in a complex life cycle: the effects of larval and adult thermal conditions on metabolic rate and heat resistance in Culex pipiens (Diptera: Culicidae). J. Insect Physiol. 59, 1001–1007 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Degut, A. et al. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. J. Exp. Biol. 225, jeb243724 (2022).

  • Burggren, W. W. Phenotypic switching resulting from developmental plasticity: fixed or reversible? Front. Physiol. 10, 1–13 (2020).


    Google Scholar
     

  • Shinner, R., Terblanche, J. S. & Clusella-Trullas, S. Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis. Evol. Ecol. 34, 555–572 (2020).


    Google Scholar
     

  • Wilson, R. S., Franklin, C. E. & Franklin, C. E. Testing the beneficial acclimation hypothesis. Trends Ecol. Evol. 17, 66–70 (2002).


    Google Scholar
     

  • Slotsbo, S., Schou, M. F., Kristensen, T. N., Loeschcke, V. & Sørensen, J. G. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance. J. Exp. Biol. 219, 2726–2732 (2016).

    PubMed 

    Google Scholar
     

  • Brown, P. M. J. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. BioControl 56, 623–641 (2011).


    Google Scholar
     

  • Knapp, M. Emergence of sexual size dimorphism and stage-specific effects of elevated temperature on growth rate and development rate in. Harmonia Axyridis. Physiol. Entomol. 39, 341–347 (2014).


    Google Scholar
     

  • Castro, C. F., Almeida, L. M. & Penteado, S. R. C. The impact of temperature on biological aspects and life table of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Fla. Entomol. 94, 923–932 (2011).


    Google Scholar
     

  • Islam, Y. et al. Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature. Sci. Rep. 11, 13565 (2021).

  • Lamana, M. L. & Miller, J. C. Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environ. Entomol. 27, 1001–1005 (1998).


    Google Scholar
     

  • Knapp, M. & Nedvěd, O. Gender and timing during ontogeny matter: Effects of a temporary high temperature on survival, body size and colouration in Harmonia axyridis. PLoS One 8, e74984 (2013).

  • Sloggett, J. J. Aphidophagous ladybirds (Coleoptera: Coccinellidae) and climate change: a review. Insect Conserv. Divers. 14, 709–722 (2021).


    Google Scholar
     

  • Boher, F., Jaksic, F. M., Martel, S. I., Orellana, M. J. & Bozinovic, F. Does thermal physiology explain the ecological and evolutionary success of invasive species? Lessons from ladybird beetles. Aegyptus 19, 243–255 (2018).


    Google Scholar
     

  • Knapp, M., Vernon, P. & Renault, D. Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. J. Therm. Biol. 74, 275–280 (2018).

    PubMed 

    Google Scholar
     

  • Řeřicha, M., Dobeš, P. & Knapp, M. Changes in haemolymph parameters and insect ability to respond to immune challenge during overwintering. Ecol. Evol. 11, 4267–4275 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knapp, M., Řeřicha, M., Haelewaters, D. & González, E. Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system. Proc. R. Soc. B Biol. Sci. 289, 20212538 (2022).

  • Awad, M., Nedvědová, J. & Nedvěd, O. Thermal plasticity of antioxidative activity in fresh adults of Harmonia axyridis (Coleoptera: Coccinellidae). Afr. Entomol. 29, 125–132 (2021).


    Google Scholar
     

  • Beaulieu, M., Geiger, R. E., Reim, E., Zielke, L. & Fischer, K. Reproduction alters oxidative status when it is traded-off against longevity. Evolution 69, 1786–1796 (2015).

    PubMed 

    Google Scholar
     

  • Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F. & Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13, 3851 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prodhomme, C. et al. Seasonal prediction of European summer heatwaves. Clim. Dyn. 58, 2149–2166 (2022).


    Google Scholar
     

  • Iltis, C., Louâpre, P., Vogelweith, F., Thiéry, D. & Moreau, J. How to stand the heat? Post-stress nutrition and developmental stage determine insect response to a heat wave. J. Insect Physiol. 131, 0–2 (2021).

    CAS 

    Google Scholar
     

  • Wojda, I. Temperature stress and insect immunity. J. Therm. Biol. 68, 96–103 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sinclair, B. J., Ferguson, L. V., Salehipour-Shirazi, G. & Macmillan, H. A. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).

    PubMed 

    Google Scholar
     

  • Rodgers, E. M. & Gomez Isaza, D. F. Harnessing the potential of cross-protection stressor interactions for conservation: a review. Conserv. Physiol. 9, 1–27 (2021).


    Google Scholar
     

  • Zhang, S., Cao, Z., Wang, Q., Zhang, F. & Liu, T. X. Exposing eggs to high temperatures affects the development, survival and reproduction of Harmonia axyridis. J. Therm. Biol. 39, 40–44 (2014).

    CAS 

    Google Scholar
     

  • Jang, T. & Lee, K. P. Context-dependent effects of temperature on starvation resistance in Drosophila melanogaster: mechanisms and ecological implications. J. Insect Physiol. 110, 6–12 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Pijpe, J., Brakefield, P. M. & Zwaan, B. J. Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana. Evol. Ecol. 21, 589–600 (2007).


    Google Scholar
     

  • Marshall, K. E. & Sinclair, B. J. The impacts of repeated cold exposure on insects. J. Exp. Biol. 215, 1607–1613 (2012).

    PubMed 

    Google Scholar
     

  • Marshall, K. E. & Sinclair, B. J. Repeated stress exposure results in a survival-reproduction trade-off in. Drosoph. Melanogaster. Proc. R. Soc. B Biol. Sci. 277, 963–969 (2010).


    Google Scholar
     

  • Lin, Y. J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Partridge, L., Prowse, N. & Pignatelli, P. Another set of responses and correlated responses to selection on age at reproduction in. Drosoph. Melanogaster. Proc. R. Soc. B Biol. Sci. 266, 255–261 (1999).

    CAS 

    Google Scholar
     

  • Ben-Yosef, M. et al. Effects of thermal acclimation on the tolerance of Bactrocera zonata (Diptera: Tephritidae) to hydric stress. Front. Physiol. 12, 686424 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Q. et al. Cloning three Harmonia axyridis (Coleoptera: Coccinellidae) heat shock protein 70 family genes: regulatory function related to heat and starvation stress. J. Entomol. Sci. 50, 168–185 (2015).


    Google Scholar
     

  • Green, C. K., Moore, P. J. & Sial, A. A. Impact of heat stress on development and fertility of Drosophila suzukii Matsumura (Diptera: Drosophilidae). J. Insect Physiol. 114, 45–52 (2019).


    Google Scholar
     

  • Bowler, K. & Terblanche, J. S. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol. Rev. 83, 339–355 (2008).

    PubMed 

    Google Scholar
     

  • Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. & Sinclair, B. J. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera : Drosophilidae). 24, 1927–1938 (2011).

  • Lecheta, M. C. et al. Integrating GWAS and Transcriptomics to identify the molecular underpinnings of thermal stress responses in. Drosoph. Melanogaster. Front. Genet. 11, 658 (2020).

    CAS 

    Google Scholar
     

  • Klok, C. J. & Chown, S. L. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Lepidoptera: Tineidae). J. Insect Physiol. 43, 685–694 (1997).

    CAS 

    Google Scholar
     

  • Zeilstra, I. & Fischer, K. Cold tolerance in relation to developmental and adult temperature in a butterfly. Physiol. Entomol. 30, 92–95 (2005).


    Google Scholar
     

  • Terblanche, J. S. & Chown, S. L. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). J. Exp. Biol. 209, 1064–1073 (2006).

    PubMed 

    Google Scholar
     

  • Jean David, R. et al. Cold stress tolerance in Drosophila: analysis of chill coma recovery. D. Melanogaster. J. Therm. Biol. 23, 291–299 (1998).


    Google Scholar
     

  • MacMillan, H. A., Walsh, J. P. & Sinclair, B. J. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci. 16, 263–276 (2009).


    Google Scholar
     

  • Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).


    Google Scholar
     

  • Awde, D. N., Řeřicha, M. & Knapp, M. files – Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds [Data set]. Dryad https://doi.org/10.5061/dryad.1c59zw413 (2023).

  • Knapp, M., Dobeš, P., Řeřicha, M. & Hyršl, P. Puncture vs. reflex bleeding: Haemolymph composition reveals significant differences among ladybird species (Coleoptera: Coccinellidae), but not between sampling methods. Eur. J. Entomol. 115, 1–6 (2018).


    Google Scholar
     

  • Knapp, M., & Řeřicha, M. Effects of the winter temperature regime on survival, body mass loss and post-winter starvation resistance in laboratory-reared and field-collected ladybirds. Sci. Rep. 10, 4970 (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *